

FROM HAZARD TO IMPACT

Global Flood Maps

Design return period hazard maps for flood extent and depth

PLAN

Global Flood Models

Probabilistic modelling for evaluating the frequency and intensity of floods and impacts

ASSESS

Flood Foresight

Near real-time assessment of flood events and their impacts

JBA Global Resilience

JBA has delivered projects in more than 125 countries and territories

Changing disasters and impacts

Climate change

High income countries Insurance, govt reserves

Low income countries
Protection gap

Exposure

Promise to cover the actual loss incurred by an event

Claim Is Submitted

PARAMETRIC INSURANCE

TRADITIONAL INDEMNITY-BASED INSURANCE

The Carrier **Reviews The** Claim

Adjuster Assesses And Validates The Claim

Claim Is Paid Once Assessment Is Done

Coverage of the probability of a pre-defined event happening

Policy

Event Occurs

3rd Party Data **Verifies Payment** Requirements Met

Claim Is Paid

How DRF can fall short

https://www.insurancejournal.com/news/international/2024/07/08/782726.htm

Artemis

https://www.artemis.bm/news/hurricane-beryl-not-expected-to-trigger-jamaica-cat-bond-loss-plenum-confirms/

An index for flood/rainfall

The index determines when payouts are made

Measureable

Reliable

Independent

Relevant

Must enable both...

- a robust analysis of the expected range of the hazard or risk
- monitoring of the hazard/risk to assess exceedance of triggers for payouts

Data requirements for flood/rainfall

Risk assessment

Sufficient time period to capture extremes
Spatial resolution that captures granularity of hazard
Assess impacts (considering exposure and vulnerability)
Limitations and assumptions of method are understood and accepted

Product design

Data supports **structuring** of insurance cover **Trigger thresholds** based on metrics of choice

Consistent with risk assessment data Reliable, with fallback options for data failures Minimise the gap between the estimated risk and the actual event – the **Basis Risk**

Actions

Rapid payouts based on monitoring Refine product based on experience

Data solutions

Туре	Options	Strengths	Potential limitations
EO	Visible, IR, SAR	Spatial coverageResolutionIntegrity	AvailabilityHistorical consistencyDetection algorithmsCost
Gauges	Rain, river (flow)	Trusted data sourceAccurate point measureSimple, relatively cheap	AccessibilityReliabilityLocalisedCan be tampered with
Hydrological modelling	Global, local	Spatial/temporal resolutionGlobal coverage	ComplexPotentially costlyInvolve assumptions
Disaster reports	Global and local agencies	Detailed	SubjectivityPotential for inconsistency

Experience of implementation

CAREC region

- Central Asia
- Flood and EQ
- People/economic impacts
- Test DRF options
- End user knowledge gap

Pakistan

- Risk modelling & monitoring
- People affected
- Humanitarian DRF payouts
- Rationale for triggering

Africa

- West & southern Africa
- For flood policies
- Economic loss
- Getting reinsurers on board

Pacific Islands

- Rainfall-based risk modelling
- Population exposure
- Cumulative index
- Technical challenges

jbagr.com

General lessons learned

Knowledge, awareness and language

State of the science
Technical capabilities and limitations
Data availability and validation

Clarity of DRF objectives

Coverage of flood types, national or local scale Impacts being modelled – direct or proxy? Frequency of payments

Specific flood challenges

Event definition

Human factors – drainage, water management

What can we do?

Technical requirements

Sufficiency
Combined strength of data sources
Consistency of approach

Stakeholder engagement

Don't assume everyone understands the concept
Deliver appropriate solutions
Bring in local capacity

Calculation Agent role

Monitoring/assessing Reporting/validating Independence

Closing remarks

The opportunity

Parametric flood is behind other hazards
Well supported with funds from MDBs, IDF, etc
Applications of new technology

The approach

Be open with stakeholders about what is and is not possible

Continue to educate stakeholders on the science/tech

Consider combined solutions and use of multiple triggers

https://jbagr.com/expertise/

